Scope
This electrical design guide shall only be used under the direction of the Homeless Facilities and Special Projects Division, for temporary homeless shelters. This document can be modified by BOE, for use with permanent homeless facilities. Please contact the Homeless Facilities and Special Projects Division Electrical Engineer (HFD-EE) for clarification.

Purpose
The purpose of this document is to optimize the electrical design, construction, and delivery of all temporary homeless shelter projects.

General Specifications
1. MEP Coordination and Construction Forces
 a. BOE MEP, MEP Consultant, and Construction Forces shall meet in the pre-design phase to discuss the overall method of approach, lowest cost construction method, and fastest material procurement times. BOE MEP shall provide overall guidance.

2. LADWP Electric Services
 a. A new LADWP Electric Service Planning Information (SPI) Form shall be completed if installing a new electric service or upgrading an existing electric service. This shall be completed immediately, since it has the potential of being the longest lead item. The lead time is difficult to control, since LADWP will need to assess/upgrade their infrastructure.
 b. Typically, a complete SPI package is sent directly to LADWP. For all temporary homeless shelter projects, BOE will be facilitating the application process, to expedite and track the overall progress of LADWP, and the MEP Consultant. The MEP Consultant shall provide to BOE, in one complete electronic package via email, the following items:
 i. Completed and signed, LADWP Service Planning Information Form.
 1. To complete the form, use Navigate LA and Zimas, to research all information. All incomplete forms will not be accepted.
 ii. AutoCAD file of
 1. The site plan
 2. Existing and new meters, transformers, etc…
 3. Building elevations
 4. Single line diagram
 5. Panel schedule(s)
 iii. A PDF of the site electrical distribution system, single line diagram, riser diagrams, and elevations of switchgear.
 iv. All LADWP requirements can be found in the LADWP Commercial Service Construction Standards, and the LADWP Electrical Service Requirements. The MEP Consultant shall coordinate all required clearances with the Architect for design and overall site layout. All clearances, and dimensions, shall be clearly indicated on the electrical plans.
 1. All LADWP requirements are posted on their website under “Codes and Specifications”.
2. Reference: LADWP 0A006-01, LADWP C702-50, LADWP C721-01, LADWP H-242, LADWP UB721-(03) and (07) and (09), and (12) and (16) and (17) and (29) and (32), LADWP UB730-01
 c. Once a complete package has been submitted to BOE. BOE will coordinate the application process with the LADWP Electrical Design Engineer. BOE will have LADWP post the maximum short circuit fault current at the meter on WMIS before an official LADWP Service Commitment Letter is issued for the project.
 d. The MEP Consultant shall finalize the site electric power distribution system and obtain and electrical ready to issue set, with all variances from LADBS. The site electric power distribution system shall be used by the Contractor to procure all materials and begin the site underground electrical distribution system construction.
 e. The final electrical design set shall not exceed the capacity of the underground site electrical distribution system that was proposed in the electrical ready to issue set.

3. Electrical Power Distribution System
 a. Avoid the use of battery inverter systems, or a centralized emergency power distribution system.
 b. A 3-phase, 4-wire, 480V distribution system shall be provided to the site for all temporary homeless shelters. A different voltage distribution system is permitted if it will reduce cost by using an overhead electric feed. Please consult with the HFD-EE during the design phase.
 c. A service rated electrical panel or a service rated disconnect, shall be provided to each building, in accordance with the LAEC/CEC/NEC.
 d. Coordination of site utilities shall be done during the design phase (i.e. sewer, water, fire).
 e. Provide tamper proof receptacles.
 f. Provide AFCI receptacles in all sleeping spaces, and as required by the LAEC/CEC/NEC.
 g. Provide GFCI receptacles as required by the LAEC/CEC/NEC.

4. Methane Zones and Methane Buffer Zones
 a. Methane mitigation shall be implemented for the electrical system in Methane Zones and Methane Buffer Zones. LADWP methane mitigation shall also be implemented, as required by LADWP.

5. Lighting
 a. All lighting shall be designed in accordance with the current IES standard illumination levels.
 b. Although Title 24 plan check and compliance is exempt for Temporary Homeless Shelters. The following guidelines shall be used:
 i. Use Title 24, as a basis for indoor lighting design, with respect to wattage per square foot allowances.
 ii. All interior lighting shall be LED and be dimmable. All enclosed spaces shall be controlled via an occupancy sensor. A wall mounted dimmable, occupancy
sensor switch is preferred over a room controller based system, for cost savings.

iii. All exterior lighting shall be Title 24 compliant and controlled via an astronomical time clock.

c. Color Temperatures:
 i. Select one color temperature, for the entire site, for all interior lighting.
 ii. Select one color temperature, for the entire site, for all exterior lighting.

d. Photometrics
 i. Provide normal lighting photometrics on the electrical plans.
 ii. Provide emergency lighting photometrics on the electrical plans.

e. Design lighting in accordance with IES recommended levels.

f. Exterior Lighting:
 i. When possible, mount all exterior lighting to the exterior of the buildings, instead of utilizing site pole lights. If site pole lights are used, the Electrical Consultant shall provide proof to BOE, of a quantifiable cost savings amount.
 ii. All exterior lighting shall comply with BUG ratings.

g. Budget pricing shall be obtained during the design phase, with a target cost of less than $5 per square foot of indoor space, for all lighting in the project.

h. Alternate light fixtures shall be approved by the HFD-EE prior to use. For approval, the Electrical Consultant shall submit the lighting specification sheet, budget pricing, and lead time to the HFD-EE for review. Allow a minimum of three working days for review.

6. Modular Furniture
 a. All circuits will be AFCI protected at the electrical panel using a single phase AFCI protected breaker (Square D Catalogue #QOB120CAFI, $76.50/Each, 7-10 day lead time or equivalent). Our intention is to not allow the sharing of neutral wires between two different circuits.
 b. Provide tamper proof receptacles, when 120V receptacles are specified.
 c. USB only receptacles shall be provided for use in the modular furniture.
 d. The 120V general use receptacles, in the sleeping areas, shall be capable of being turned off via a switch. The switch shall be located at an area only accessible to operations staff. The breaker at the panel cannot be used as the switch.
 e. A minimum of one floor mounted junction box shall be provided to each group of modular beds (maximum of 16 beds). If a wall is provided at the end of the furniture run, then a wall mounted junction box is permitted. The junction box shall be concealed beneath the modular bed. The floor mounted junction box shall be located one foot away from all nearby walls, to allow for a sufficient bending radius for the modular furniture interface cable.
 f. A dedicated neutral wire shall be provided to each hot circuit.

7. Sprung Structure
 a. A building automation system (BAS) shall not be specified for the project.
 b. Dimmable high bay LED lights shall be used for general area lighting in the open spaces. The high bay lights shall be cord connected, and powered from a twist lock
receptacle. The dimmable high bay LED light shall be mounted using a hook/loop method, from a standard Sprung structure hanging bracket.

8. **Greenheck Exhaust Fans and Intake Louver System (Sprung Structure)**
 i. Each Sprung Structure shall have a maximum of 3 exhaust fans, and a maximum of 6 intake louvers. A minimum of 1 exhaust fan shall be provided for each Sprung Structure.
 ii. A minimum intake louver free flow area of 7.56 square feet shall be provided for each operating 5,000 cfm exhaust fan.
 iii. The remote start/stop switches shall be located in a staff office or a staff administration room.
 iv. The motor controller shall be located in a room that does not contain a mop sink or water heater. The motor controller is permitted to be installed outdoors.
 b. The Greenheck Exhaust Fan(s) shall be electrically interlocked with the HVAC System, Fire and Smoke Detection System, and any other system, as required for a LADBS Certificate of Occupancy.
 c. Please see the attached sequence of operations (BOE Motor Controller Operating Mode)
 d. Obtain budget pricing during the design phase, and submit a total lighting and lighting system quote to BOE for review. This shall occur a minimum of three weeks before an electrical RTI set is to be submitted to BOE.

9. **Modular Buildings**
 a. Provide a minimum of two (208V, 30A, 4500 watt) receptacles, for the future kitchen equipment in the food preparation area.
 b. Provide a minimum of six (120V, 20A, 1900 watt) receptacles, for the future kitchen equipment in the food preparation area.

10. **Exterior Shade Structure Heater**
 a. Manufacturer: Infratech
 i. WD-30 Heater (Part #21-2030, Model #WD-3027 SS)
 1. Recommended mounting height: 7FT to 9FT
 2. Approximate coverage at mounting height: 7FT by 7FT
 3. Sample application 1: Heaters configured 6-6
 b. Quantity: 1 of Part #30-4056 (6 Relay Panel, 480V, 3Ph, 55A).
 c. Quantity: 1 of Part #30-4046 (2 Zone Analog Control with Digital Timer).
 d. Each WD-3027 SS Heater will have a dedicated 15A, single pole circuit breaker.
 4. Sample application 2: Heaters configured 8-8
b. Quantity: 1 of Part #30-1100 (8 Relay Panel, 480V, 3Ph, 75A).

c. Quantity: 1 of Part #30-4046 (2 Zone Analog Control with Digital Timer).

d. Each WD-3027 SS Heater will have a dedicated 15A, single pole circuit breaker.

ii. WD-40 Heater (Part #21-2130, Model #WD-4027 SS)

1. Recommended mounting height: 8FT to 12FT
2. Approximate coverage at mounting height: 8FT by 10FT
3. Sample application 1: Heaters configured 6-6

 a. Quantity: 12 of Part #21-2130 (WD-4027 SS Heater).
 b. Quantity: 1 of Part #30-4056 (6 Relay Panel, 480V, 3Ph, 75A).
 c. Quantity: 1 of Part #30-4046 (2 Zone Analog Control with Digital Timer).
 d. Each WD-4027 SS Heater will have a dedicated 20A, single pole circuit breaker.

4. Sample application 2: Heaters configured 8-8

 b. Quantity: 1 of Part #30-1100 (8 Relay Panel, 480V, 3Ph, 100A).
 c. Quantity: 1 of Part #30-4046 (2 Zone Analog Control with Digital Timer).
 d. Each WD-4027 SS Heater will have a dedicated 20A, single pole circuit breaker.

iii. Any other configuration, as recommended by the Infratech manufacturer, is permitted.

11. List of electrical equipment for use.

 a. Switches

 i. Lutron Diva Dimmer and Switch Series
 ii. Lutron Maestro Dimmable Switch Series with integrated on/off and integrated vacancy sensor. 0-10V LED Dimmer or Electronic Low Voltage (ELV) Dimmer.

 b. Astronomical Time Clock

 i. Intermatic: ET8000 or ET9000 Series
 ii. Tork: EWZ201C Series
c. *Indoor and Outdoor Lighting*

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Catalogue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF</td>
<td>DRDHNJO, DRDS4R10930</td>
</tr>
<tr>
<td>DMF</td>
<td>DRDHNJO1000EM, DRD5S4R</td>
</tr>
<tr>
<td>Amerlux</td>
<td>GRUV1.5-GB-A16-PL-10-30-HW-120/277-2-IND-0-10V</td>
</tr>
<tr>
<td>Dual Lite</td>
<td>E4RI</td>
</tr>
<tr>
<td>ConTech</td>
<td>LPU2121-BZ, LPAOCC-BZ</td>
</tr>
<tr>
<td>Columbia</td>
<td>LZPT22-40MLSM-LSRS-E</td>
</tr>
<tr>
<td>Poulsen</td>
<td>VL45-P/9.8 IN/1/22W, LED/A-21/MEDIUM/120V/GLASS</td>
</tr>
<tr>
<td>Poulsen</td>
<td>VL45-P/14.6 IN/1/22W, LED/A-21/MEDIUM/120V/GLASS</td>
</tr>
<tr>
<td>ConTech</td>
<td>WS20230KMVD-NK</td>
</tr>
<tr>
<td>Beacon</td>
<td>TRV-D/24L-27/3K7/3/UNV/MOB/15S/33-20F/XXX</td>
</tr>
<tr>
<td>Hubbell</td>
<td>LBX2-MO-1-35K-A2-C2-CD1-CL4HLIP20A-WW22</td>
</tr>
<tr>
<td>OCL</td>
<td>VA2-S1SA-08-WF-BKP-2L/35-35K-120-DMO</td>
</tr>
<tr>
<td>Dual Lite</td>
<td>EV2D1</td>
</tr>
<tr>
<td>Evenlite</td>
<td>RZR3-EM-R-1-BA-1B-SD</td>
</tr>
<tr>
<td>Oracle</td>
<td>OWS-FC-202-LED-4000L-DIM10-MVOLT-30K-BZ</td>
</tr>
<tr>
<td>H.E. Williams</td>
<td>96-4-L40/840-HIAFR</td>
</tr>
<tr>
<td>Komee</td>
<td>KMHM-100W-40-PR-HM-BLK-UD-CORD</td>
</tr>
<tr>
<td>Komee</td>
<td>KMHM-100W-40-PR-HM-BLK-UD-CORD-A-EMB-1400</td>
</tr>
<tr>
<td>H.E. Williams</td>
<td>PTS-14-L45/835-RA-DIM-UNV</td>
</tr>
<tr>
<td>Brownlee</td>
<td>1458-NT-B12LED-40K-E</td>
</tr>
<tr>
<td>Cooper</td>
<td>14RTC-24-UNV-L835-HC, DF14WU</td>
</tr>
<tr>
<td>Cooper</td>
<td>24RTC-48-UNV-L835-HC, DF24WU</td>
</tr>
<tr>
<td>Cooper</td>
<td>HVSL4-4-LD4-2LO-35-UNV-O-ED1D1</td>
</tr>
<tr>
<td>Cooper</td>
<td>HVSL4-4-LD4-2LO-35-UNV-O-ED1D1-EL14W</td>
</tr>
<tr>
<td>Cooper</td>
<td>LPX6-2C</td>
</tr>
<tr>
<td>Cooper</td>
<td>XTOR3B-W-WT-PC2, EWP/XTOR/WT</td>
</tr>
<tr>
<td>Cooper</td>
<td>4SNLEDLD5-41SL-LW-UNV</td>
</tr>
<tr>
<td>Cooper</td>
<td>4SNLEDLD5-41SL-LW-UNV-EL</td>
</tr>
<tr>
<td>Cooper</td>
<td>6LBM1LI, EU6B10208035, HB26, LD6B15D010</td>
</tr>
<tr>
<td>Cooper</td>
<td>6LBM1LIE, EU6B10208035, HB26, LD6B15D010IEM14</td>
</tr>
<tr>
<td>Cooper</td>
<td>XTOR3B-W-WT-PC1</td>
</tr>
<tr>
<td>Cooper</td>
<td>LPX62C</td>
</tr>
</tbody>
</table>
BOE MOTOR CONTROLLER OPERATING MODE FOR UP TO THREE MOTORS

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>ROOF MOTOR FANS</th>
<th>INTAKE LOUVERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC #1 OR AC#2</td>
<td>MF#1 OFF; MF#2 OFF; MF#3 OFF</td>
<td>LOUVERS 1,2,3,4,(5),(6) SHUT</td>
</tr>
<tr>
<td>AC #1 AND AC#2</td>
<td>OFF; *PON OFF; OFF</td>
<td>ALL INTAKE LOUVERS "OPEN" WHEN MF#1 OR MF#2 OR MF#3 IS "ON"</td>
</tr>
</tbody>
</table>

MOTOR CONTROLLER SHALL BE CAPABLE OF OPENING FOUR TO SIX INTAKE LOUVERS

*PON = PERMISSIVE ON (MANUAL START)

SAFETY MODE

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC#1 AND AC#2</th>
<th>ROOF MOTOR FANS</th>
<th>INTAKE LOUVERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOKE OR FIRE DETECTED</td>
<td>OFF</td>
<td>MF#1 OFF; MF#2 OFF; MF#3 OFF</td>
<td>LOUVERS 1,2,3,4,(5),(6) SHUT</td>
</tr>
<tr>
<td>NO SMOKE AND NO FIRE</td>
<td>*PON</td>
<td>*PON OFF; OFF</td>
<td>ALL INTAKE LOUVERS "OPEN" WHEN MF#1 OR MF#2 OR MF#3 IS "ON"</td>
</tr>
</tbody>
</table>

*PON = PERMISSIVE ON

IF MOTOR FAN #1 IS ON, ALL INTAKE LOUVERS ARE OPEN
IF MOTOR FAN #2 IS ON, ALL INTAKE LOUVERS ARE OPEN
IF MOTOR FAN #3 IS ON, ALL INTAKE LOUVERS ARE OPEN

THE MOTOR CONTROLLER SHALL BE CAPABLE OF OPENING FOUR TO SIX INTAKE LOUVERS WHEN ANY MOTOR FAN IS ON

THE MOTOR CONTROLLER SHALL HAVE LOCAL START/STOP CAPABILITIES, AND BE ABLE TO CONNECT A REMOTE START/STOP CONTROLLER